
1

Pixel-Level Domain Adaptation for Real-to-Sim
Object Pose Estimation

Kun Qian, Member, IEEE, Yanhui Duan, Chaomin Luo, Senior Member, IEEE, Yongqiang Zhao, Xingshuo Jing

Abstract—Transferring robotic grasping skills learned from a
simulator to the real world is beneficial in reducing the cost
of labeling. However, the models trained on synthetic data are
brittle when being applied to real-world data due to the domain
gap. In this paper, we propose CCM Pixel-DA, a novel real-to-
sim approach to unsupervised domain adaptation for object pose
estimations, which outperforms conventional domain adaptation
methods in preserving structural information, semantic informa-
tion, and object pose during the transfer. The pipeline decouples
domain adaptation and pose estimation, which allows the CCM
Pixel-DA method to be integrated into state-of-the-art object pose
estimation networks. The proposed method is further integrated
into a pipeline for robot grasping. Experimental results on a real-
world robot grasping system validate that the system is capable
of grasping real-world objects without object pose annotations
in the real-world domain.

Index Terms—Transfer learning, Domain adaptation, Genera-
tive adversarial networks, Object pose estimation, Robot grasping

I. INTRODUCTION

DATA-DRIVEN object pose estimations are highly reliant
on the number of training samples. With the rapid

progress in synthetic image generation [1][2][3], using syn-
thetic data as model input has become an alternative method
for data-driven learning [4][5]. Unfortunately, models naively
trained on synthetic data fail to be generalized to real images
because of reality gaps [6].

A solution to this problem is unsupervised pixel-level do-
main adaptation (Pixel-DA)[7][8]. For example, [7] performs
pixel-level alignment to translate the style of source data to
a target domain. It aims to minimize the domain adversarial
loss but unnecessarily preserves the content. The result is that
crucial semantic information may be lost. To handle this issue,
Cycle-consistency has been recently proposed in a GAN-
based cross-domain image generation model [9]. However, the
combination of Cycle-consistency and domain adversarial loss
fails to meet the demand of transferring object pose estimation
samples, because it lacks the shape and category constraints
on a single sample while the samples affect each other during
training.

Thus we consider this demand for preserving the object
information during the conversion from the psychological per-

Corresponding author: Kun Qian, Chaomin Luo.
K. Qian, Y. H. Duan, Y. Q. Zhao and X. S. Jing are with the School of

Automation, Southeast University and the Key Laboratory of Measurement
and Control of CSE, Ministry of Education, No.2, Sipailou, Nanjing 210096,
China. E-mail: kqian@seu.edu.cn

Chaomin Luo is with the Department of Electrical and Computer Engi-
neering, Mississippi State University, Mississippi State, MS 39762 USA. E-
mail:chaomin.luo@ece.msstate.edu

spective. The cognitive psychology studies [10][11] disclosed
that the humans use visual attention conditioned on objects’
geometric and spatial properties to generate motor signals.
Thus the key to preserving the object is to keep the object
unchanged during the conversion, which aims to keep the same
visual attention for the robot grasping like a human [12]. It can
be formalized via the use of an additional loss that penalizes
large differences between source and generated images for
foreground pixels only, called Content-consistency.

In this paper, we present a Pixel-DA method for unsu-
pervised real-to-sim object pose estimation using unpaired
samples. The proposed method follows the unsupervised learn-
ing framework, as it’s independent of real-world object pose
annotations. The core of our approach is the improvement
of the Pixel-DA method [7] by combining Cycle-consistency,
Content-consistency, and Mapping-consistency (CCM). There-
fore, the proposed method is called CCM Pixel-DA. In other
words, we have improved the CycleGAN network [9] by
adding the content consistency to preserve the structural and
semantic similarity during conversion.

In summary, the contributions of this work are as follows:

• We have proposed the CCM Pixel-DA model, a Pixel-
Level domain adaptation (Pixel-DA) model based on
Cycle-consistency, Content-consistency, and Mapping-
consistency (CCM) for transferring pose estimation sam-
ples from the real-world domain to the simulation domain
without any real-world labeled data. The model outper-
forms previous work on preserving structural information,
semantic information, and object pose during the transfer.

• We have proposed a pipeline for robot grasping based
on domain adaptation and data-driven pose estimation,
which promotes robot grasping without human annota-
tions and data collection in the real world.

• The experimental results on both dataset and a real-
world UR5 robot have validated the effectiveness of
our methods in object pose estimation as well as robot
grasping. An unpaired simulated and real-world dataset is
also collected for testing the real-to-sim grasping pipeline.

The rest of this paper is organized as follows: Section II
presents related work on domain adaptation and object pose
estimations. The overview of the method and the robotic
grasping system is described in Section III. Then, Section IV
describes the details of the proposed method. Experimental
results of pixel-level domain adaptation and 6D object pose
estimation are reported in Section V, and the robotic grasping
experiments are depicted in Section VI, followed by a conclu-
sion in Section VII.

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2023.3237502

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Southeast University. Downloaded on May 19,2023 at 11:24:10 UTC from IEEE Xplore. Restrictions apply.

2

II. RELATED WORK

Robot grasping methods can be roughly decomposed into
two groups: object pose estimation methods and grasp pose
detection methods. Grasp pose detection methods[13] extract
the grasp pose candidates by directly sampling the scene point
clouds, which lack shape sensitivity and global geometric
information. Thus, the estimation method is inferior to the
detection method in terms of grasping stability.

Data-driven object pose estimation methods predict the
object poses from image data with deep neural networks
in [14][15][16]. They formulate the pose estimation as a
problem of estimating the rigid transformation containing 3D
rotation and translation from the object coordinate system to
the camera coordinate system, by training on a large amount
of data. Recent pose estimation methods such as RePose [17],
RNNPose [18] and ZebraPose [19] only employ RGB images,
while FFB6D [20], PVN3D [21] and Densefusion [16] are
based on RGB-D fusion.

A problem with the data-driven object pose estimation
methods is that they rely heavily on the amount of human-
labeled data. An appealing alternative is to use synthetic
data [22][23][24][25] with pose annotations. However, the
models trained purely on simulated data are often difficult to
generalize well to the unseen real world due to a significant
domain gap. In [26], domain randomization is utilized to
bridge the gap for PVN3D-based pose estimation. In contrast,
we focus on domain adaptation methods in this paper.

The solutions to domain adaptation can be divided into
real-to-sim and sim-to-real methods. The sim-to-real methods
in [27] learn to make synthetic data more realistic with an
adversarial framework. Bousmalis et al. [4] presented the
Grasp-GAN method which directly modifies synthetic images
to make them more realistic and more useful for training a
data-driven end-to-end vision-based grasping system. Jing et
al. [28] transferred the grasping skills learned from simulated
environments to the real world to complete the robot grasping.

Meanwhile, the real-to-sim method refers to generating
synthetic data from real-world data, so that a model learned
in simulators can deal with the synthetic data generated from
real data. James et al. [29] proposed the model called RCAN
mapping the heavily randomized simulation images with ran-
dom textures and real images to a canonical (much simpler)
rendered image. The pose estimation domain adaptation task is
similar to the autonomous driving problem [30] in preserving
the foreground while transferring the entire style without any
annotations in the real-world domain. Therefore, we choose
real-to-sim transfer in the object pose estimation inference
stage. An in-depth description of the reasons will be explained
in Section IV.

III. OVERVIEW

The pipeline of the pixel-level domain adaptation for real-
to-sim 6D object pose estimation is composed of two models:
real-to-sim Transfer Model and 6D Pose Estimation Model.
These two models are trained separately in the training stage,
as shown in Figure 1.

Pixel-DA
Cycle-

Consistency

Content-

Consistency

Map-

Consistency

 Synthetic RGB images

 Real-world RGB images

CCM-Pixel-DA
Real-to-Sim

Transfer Model

Color

Features

Geometry
Features

Pose

Predictor

6D Pose

Estimation

Model

Fusion

Features

 Synthetic RGB-D images

and annotations
DenseFusion

Fig. 1. The training pipeline of the Real-to-Sim Transfer model (top) and
the 6D Pose Estimation model (bottom). Unpaired and unlabeled synthetic
and real-world images are employed to train the Real-to-Sim Transfer model.
Synthetic RGB-D images and annotations are used to train a 6D Pose
Estimation model.

In the training stage, we initially utilize unpaired synthetic
RGB images and real-world RGB images to train the Real-to-
sim Transfer Model in Figure 1. The CCM Pixel-DA Network
includes four modules: Pixel-DA, Cycle-Consistency, Content-
Consistency, and Mapping-Consistency, as shown in Figure 1.
Then we utilize the synthetic data including RGB images,
depth images, object models, masks, and object poses, to train
the 6D Pose Estimation Model in the simulation domain.

In our current implementation, we employ the end-to-
end deep learning approach, DenseFusion [16], as the 6D
pose estimator. It first detects object masks in RGB images
using Mask R-CNN. Then it embeds and fuses the masked
RGB values and object point clouds at a per-pixel level in
combination with estimating the 6D pose of the object.

After training, the Real-to-Sim Transfer Model and 6D Pose
Estimation Model are used in the inference stage, as illustrated
in the blue block in Figure 2. The inference stage takes the
real-world RGB-D images as input and transfers the real-world
RGB images to the simulation domain. Then the object pose
is estimated using the real-to-sim transferred RGB image and
real depth image. Finally, the object pose is transformed into
a grasp pose for guiding the robot to conduct a grasp.

The proposed method is further implemented as a robot
grasping system, whose pipeline is depicted in Figure 2. Based
on the 6D object pose estimation results CPobject derived from
real-world RGB-D images, the system determines the best
grasp pose CPgrasp in the camera coordinate system using
an object superquadric modeling technique [31]. Then the
grasp pose BPgrasp is calculated in the base coordinate system
according to the eye-hand calibration results. The coordinate
transform in the grasping pipeline is defined as follows:

BPgrasp = B
OT

OPgrasp , (1)

where B
OT refers to the transformation from the object coor-

dinate system to the base coordinate system.
As determining grasp poses given object poses is out of

the scope of this paper, any state-of-the-art model-based pose
detection methods [32][33] can be utilized. More details of
the system implementation will be described in Section VI.

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2023.3237502

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Southeast University. Downloaded on May 19,2023 at 11:24:10 UTC from IEEE Xplore. Restrictions apply.

3

ZB

Scene RGB

Scene Depth

Segmentation

Segmentation

Mask

R-CNN

Generated

Image

Depth Crop

RGB Crop

The Inference Stage
Real-to-Sim

Transfer Model

6D Pose

Estimation

Model

Object Pose

YK

XB

YB Control signal

RGB-D data

Grasp planner

Superquadric

Grasp Model

Fig. 2. The inference pipeline (blue block) and the overview of the robot grasping system. Firstly, the inference stage takes a real-world RGB-D image as
input. Object segmentation is performed using Mask R-CNN to obtain an image crop. Then, the real-world RGB image crop is transferred to the simulation
domain by the Real-to-Sim Transfer Model in the green block. Next, the object pose is estimated by the 6D Pose Estimation Model in the orange block, using
the real-to-sim transferred RGB image crop and the real-world depth image crop. The proposed method is further implemented as a robot grasping system.
Based on the 6D object pose derived from the inference stage, the best grasp pose is determined using an object superquadric modeling technique. Finally,
the robot plans the grasping to pick up all objects in sequence.

IV. POSE ESTIMATION SAMPLE TRANSFER BASED ON
DOMAIN ADAPTATION

Sim-to-real transferred images are not sufficiently realistic
because of the variations in image background and complex
lighting conditions in real-world robotic grasping scenarios. In
contrast, real-to-sim transfer quality can be assured because
we can enforce the transfer module to generate images with
consistent backgrounds and linear variations in light intensity.
For these reasons, we consider the real-to-sim object pose
estimation issue in this paper. In addition, since pose esti-
mation samples in the simulation domain can be automatically
annotated, our method can be independent of any labeled real-
world pose estimation samples.

To meet the requirement of pose estimation, the layout and
the poses of objects in the sample images are expected to
be unchanged during the transfer. Therefore, our CCM Pixel-
DA network extends the Pixel-DA method [7] by incorpo-
rating Cycle-consistency, Content-consistency, and Mapping-
consistency. The architecture of the CCM Pixel-DA network
is illustrated in Figure 3.

A. Pixel-DA Module

Let XS =
{
xis, y

i
s

}Ns

i=0
represent an unlabeled dataset of Ns

samples from the source domain and let XT =
{
xit
}Nt

i=0
denote

a labeled dataset of Nt samples from the target domain. Our
pixel adaptation model consists of a generator GS→T and a
discriminator DT . The generator maps a source domain image
xs ∈ XS and a noise vector z ∼ pz to an adapted image xf .
The discriminator outputs the likelihood d of a given image x
being sampled from the target domain. The domain adversarial

loss LGAN (GS→T , DT , XT , XS) (see the parts with green
outlines and green arrows in Figure 3) is defined as follows:

LGAN (GS→T , DT , XT , XS)

= Ext∼XT
[logDT (xt)]

+ Exs∼XS
[log (1−DT (G (xs)))] .

(2)

The generator GS→T is a convolutional neural network with
residual connections as illustrated in Figure 4. The structure of
the discriminator DT is illustrated in Figure 5. In Figure 4 and
Figure 5, CINR-k denotes a n×n Convolution-InstanceNorm-
ReLU (CINR) layer [34] with stride k. RB × k denotes a
residual block that contains two 3× 3 convolution layers with
the same number of filters on both layers.

B. Cycle-Consistency Module

With a separate Pixel-DA module, there is no way to
guarantee that the generated samples preserve the structure
or content of the original sample. The input image will be
mapped to any random images in the target domain. Thus, the
domain adversarial loss alone fails to guarantee an input xi to
the desired output yi. In order to encourage the consistency
of the generated sample GS→T (xs) and the input sample xs,
a cycle-consistency constraint is imposed on our adaptation
module, referring to the parts with orange outlines and orange
arrows in Figure 3. To be more specific, we introduce GT→S

as another mapping from the target domain to the source
domain and define the corresponding domain adversarial loss
as LGAN (GT→S , DS , XS , XT). Thus, the sample from the
source domain will be transformed to the target domain before
back to the source domain to reproduce the original sample.
In other words, we expect GT→S (GS→T (xs)) ≈ xs and

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2023.3237502

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Southeast University. Downloaded on May 19,2023 at 11:24:10 UTC from IEEE Xplore. Restrictions apply.

4

Cycle-Consistency

Loss

Content-

Consistency Loss

Mapping-

Consistency Loss

Fake Sample

source targetSource Sample
Fake Sample

source source Target Sample

Fake Sample

target target

Mask

Mapping-

Consistency Loss

GAN Loss

Reconstructed

Sample

Fig. 3. The architecture of CCM Pixel-DA network. The CCM Pixel-DA network is built on the Pixel-DA domain adaptation method (the green part) and
combines Cycle-consistency (the orange part), Content-consistency (the blue part) and Mapping-consistency (the purple part).

Fig. 4. The generator network in the Pixel-DA module. The generator is
a convolutional neural network with residual connection. CINR-k denotes a
n×n Convolution-InstanceNorm-ReLU (CINR) layer with stride k. RB×k
denotes a residual block that contains two 3× 3 convolution layers with the
same number of filters on both layers.

Fig. 5. The discriminator network in the Pixel-DA module. The CINR-k
modules in the discriminator are similar to those in the generator.

GS→T (GT→S (xt)) ≈ xt. This module enforces the cycle-
consistency by minimizing the reconstruction error including
Lcyc (GS→T , XS) and Lcyc (GT→S , XT):

Lcyc(GS→T ,XS)=Exs∼XS
[‖GT→S(GS→T (xs))−xs‖1] , (3)

Lcyc(GT→S ,XT)=Ext∼XT
[‖GS→T (GT→S (xt))−xt‖1] . (4)

C. Content-Consistency Module

The cycle-consistency enforces the reconstruction error of
all pixels. Object pose samples usually contain complex back-
ground and varied object pose estimation samples, the changes
in the shape and pose of the objects in the samples will bring
about cumulative errors in the prediction of object pose. Thus,
we introduce the content-consistency module for calculating
the masked Pairwise Mean Squared Error (PMSE) [35], refer-
ring to the parts with blue outlines and arrows in Figure 3.
This loss penalizes the differences between pairs of pixels

rather than absolute differences between inputs and outputs.
Hence it allows the model to learn to reproduce the overall
shape of the objects in the foreground.

In our case, we expect the images adapted from the source
domain to have the same pose and category information
but a different style in the foreground as the images from
the target domain. Thereby, we extract the pose and cate-
gory similarity as the object mask similarity. Given a bi-
nary mask, the masked-PMSE loss Lcon (GS→T , XS ,MS) and
Lcon (GT→S , XT ,MT) are defined as follows:

Lcon (GS→T , XS ,MS) =

Exs∼xS

[
1

ks
‖(xs −GS→T (xs)) ◦ms‖22

− 1

k2s

(
(xs −GS→T (xs))

>
ms

)2
]
,

(5)

Lcon (GT→S , XT ,MT) =

Ext∼xT

[
1

kt
‖(xt −GT→S (xt)) ◦mt‖22

− 1

k2t

(
(xt −GT→S (xt))

>
mt

)2
]
,

(6)

where ks and kt are the number of pixels in input ks and
kt. ms and mt represent the corresponding mask of xs and
xt, respectively. ‖ · ‖22 is the squared L2-norm, and ◦ is the
Hadamard product. This loss does not hinder the foreground
from changing, but rather encourages the foreground to change
in a consistent way.

Furthermore, the masks required for the real-world domain
are obtained by self-supervised learning. A cross-domain
semantic segmentation model is trained on abundant synthetic
data before being applied to detect masks in the real-world
domain.

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2023.3237502

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Southeast University. Downloaded on May 19,2023 at 11:24:10 UTC from IEEE Xplore. Restrictions apply.

5

D. Mapping-Consistency Module

In order to better preserve the color composition after
conversion, we impose the mapping-consistency constraint on
our model (see the parts with purple outlines and arrows in
Figure 3). In particular, we regularize the generator GS→T to
be near an identity mapping when synthetic samples xt of the
target domain are provided as the input to the generator, which
has also been applied to the cycle structure. The mapping
consistency loss is defined as follows:

Lmap (GS→T , GT→S)

= Ext∼XT
[‖GS→T (xt)− xt‖1]

+ Exs∼XS
[‖GT→S (xs)− xs‖1] .

(7)

Taken together, these loss functions form the complete
objective of our CCM Pixel-DA model:

L =λ1LGAN (GS→T , DT , XT , XS)

+ λ2LGAN (GT→S , DS , XS , XT) + λ3Lcyc (GS→T , XS)

+ λ4Lcyc (GT→S , XT) + λ5Lcon (GS→T , XS ,MS)

+ λ6Lcon (GT→S , XT ,MT) + λ7Lmap (GS→T , GT→S) ,
(8)

where λ1 ∼ λ7 are the coefficients for each module. In our
experiment, we take λ1 = λ2 = 1, λ3 = λ4 = 10, λ5 = λ6 =
25, λ7 = 5 in experimental verification.

This ultimately corresponds to finding a target model fT by
solving the optimization problem:

f∗T = argmin
fT

min
GS→T
GT→S

max
DS ,DT

LCCM−Pixel−DA (fT , XS , XT , YS , GS→T , GT→S , DS , DT) .
(9)

V. EXPERIMENTS AND COMPARISON STUDIES

In this section, we firstly evaluated our CCM Pixel-DA
network in pixel-level domain adaptation. Then, an experiment
of real-to-sim 6D pose estimation was conducted. The model
training was undertaken on a computer with Intel i7 3.40GHz
and NVIDIA GeForce GTX 2060.

A. Datasets

We evaluated our CCM Pixel-DA network on 6D Pose es-
timation dataset: LineMOD [36]. Furthermore, the Occlusion-
LineMOD dataset was also used to test how well our method
can deal with occlusions. The synthetic LineMOD dataset is
built by uniformly sampling the 13 object models in LineMOD
at different viewpoints using a simulated camera with the same
intrinsic and extrinsic as the one used in LineMOD.

Fig. 6. An example in the real-world domain (left) and in the simulation
domain (right). These examples are obtained by preprocessing the samples
from LineMOD category 1. Then we feed these unpaired samples to train the
CCM Pixel-DA network.

In the experiment of pixel-level domain adaptation, we
chose and preprocessed the 13 sequences in LineMOD to build
the dataset. The dataset contains 15275 samples in the real-
world domain and 17069 samples in the simulation domain.
We preprocessed the samples in both domains in light of the
procedure as follows to highlight the content in the samples.
Firstly, the bounding box was resized to a square, whose side
length is taken as the longer side of the object bounding box.
Then, the RGB and mask samples were cropped and resized
to 128× 128. An example of the preprocessed input samples
is illustrated in Figure 6.

B. Evaluation Metrics

We evaluated the quality of the pixel-level image transfer
with the Fréchet Inception Distance (FID) metric [37] and the
Structural Similarity Metric (SSIM) [38]. Note that the better
performance of a GAN model, the lower FID is supposed
to be, whilst the SSIM will be 1 if the pair of images
are identical [38]. We measured the accuracy of 6D pose
estimation using the ADD(-S) metric [39] with 10% of the
model diameter as the threshold.

C. Pixel-level Domain Adaptation Results

Three different methods as shown in Table II were com-
pared. According to Section IV-C, the Content-consistency
module essentially complements and modifies the functions of
the Cycle-consistency module. Thus, the Content-consistency
module was disabled until the Cycle-consistency loss con-
verges to a certain degree δ, which will speed up the model
convergence. Here, we set δ as 0.8. We kept the same training
configurations for the three experiments listed. After 200
epochs, all losses of Method 1, 2, and 3 have converged.

For the identical inputs from the test datasets of 13 different
categories, the generated samples GS→T (xs) converted by
different methods are summarized in Figure 7. The qualitative
evaluation results indicate that: a) Method 1 focuses more on
the style transfer. The object in the generated samples has been
changed, especially for "Apes" and "Phones"; b) Method 2 also
lacks the ability to maintain the object poses, which will bring
errors to the pose estimation. It is because the object shape and
orientation have been changed after the conversion, such as
"Apes", "Cans", "Cats" and "Drillers", as shown in Figure 7. In
this case, the initial object pose annotation will not be exactly
accurate, which brings errors to model training; c) Our method,
i.e., Method 3 preserves the object pose during conversion and
the results of cross-domain transfer are satisfactory for object
pose estimation.

For FID metrics, the quantitative results are outlined in
Table I columns 2 to 5. We calculated the FID metrics of
the real-world samples and the simulation samples as the
benchmark. The input (XT , XS→T) represents the FID metric
for the samples in the target domain XT and the generated
samples XT→S from the source domain to the target domain,
which denotes the global transfer performance of the sample
set. For SSIM metrics, the quantitative results are summarized
in Table I columns 6 to 8. The benchmark is not provided
here because the source domain samples are unpaired with the

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2023.3237502

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Southeast University. Downloaded on May 19,2023 at 11:24:10 UTC from IEEE Xplore. Restrictions apply.

6

TABLE I
REAL-TO-SIM DOMAIN ADAPTATION RESULTS IN FID AND SSIM METRICS.

FID ↓ SSIMpair ↑

Benchmark Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

Objects/Input (XS , XT) (XT , XS→T) (XT , XS→T) (XT , XS→T) (XS , XS→T) (XS , XS→T) (XS , XS→T)

Ape 286.2205 266.3891 66.3650 50.1949 0.4224 0.5021 0.5062

Benchvise 223.8625 218.0009 194.6081 180.0514 0.2257 0.2543 0.2564

Camera 217.2798 178.6218 143.6077 138.7501 0.3687 0.3763 0.3877

Can 198.4686 131.8329 64.4702 62.7714 0.2661 0.2865 0.2901

Cat 318.0181 62.2236 58.6680 57.6020 0.3729 0.3863 0.3871

Driller 285.7084 227.2660 197.9104 151.8495 0.3725 0.3748 0.4081

Duck 223.8036 42.5852 41.7439 41.6722 0.4786 0.4800 0.4847

Eggbox 296.4884 134.6908 109.2543 75.8747 0.2755 0.2938 0.3067

Glue 285.8064 179.0264 97.8512 94.2455 0.3217 0.3289 0.3299

Holepuncher 290.8866 138.7411 99.4927 82.4587 0.3811 0.3958 0.4082

Iron 229.9871 186.9853 157.9602 141.8699 0.2605 0.2635 0.2658

Lamp 245.2955 185.4244 169.2209 153.1801 0.2167 0.2281 0.2317

Phone 229.9269 226.6932 158.4866 118.2970 0.3190 0.3263 0.3281

Avg. 256.2887 165.4435 119.9645 103.7552 0.3293 0.3459 0.3531

S
o

u
rc

e

S
am

p
le

N
ea

re
st

sa
m

p
le

fr
o
m

T
ar

g
et

M
et

h
o
d

 1

F
ak

e

S
am

p
le

M
et

h
o
d

 2

F
ak

e

S
am

p
le

M
et

h
o
d

 3

F
ak

e

S
am

p
le

Ape Benchvise Camera Can Cat Driller Duck Eggbox Glue Hole puncher Iron Lamp Phone

Fig. 7. The pixel-level real-to-sim domain adaptation results of the 13 objects in LineMOD. We exhibit the real-world (source domain) samples in the first
row. The real-to-sim results generated by Method 1, 2, 3 are shown in the second row to the fourth row, respectively. The nearest neighbors of the generated
fake samples in the simulation (target domain) are given in the fifth row.

TABLE II
COMPARED METHODS IN THE ABLATION EXPERIMENTS.

Methods Illustration

1 Pixel-DA [7]: Only Pixel-DA module.

2 CycleGAN [9]: Pixel-DA with Cycle-consistency module.

3
Our method: Pixel-DA with Cycle-consistency,
Content-consistency and Mapping-consistency.

target domain samples. The input (XS , XS→T) for SSIMpair
depicts the average SSIM score of the paired source samples
XS and the generated samples XS→T . It illustrates the ability
to preserve the structural consistency of objects.

In view of the quantitative and qualitative results, we can

draw the conclusion that the cycle-consistency greatly im-
proves the performance of the image style transfer. In addition,
the content-consistency further improves the structure, content,
and semantic similarity. As a result, Our CCM Pixel-DA
network is qualified for real-to-sim object pose estimation.

D. 6D Pose Estimation Results

The experiments on 6D pose estimation followed the train-
ing and the inference pipeline in Section III. Since the poses
of the generated samples were expected to remain unchanged
during the transfer, the 6D pose annotations from the real-
world domain were taken as the ground truth of the generated
samples. Afterward, ADD(-S) scores were utilized as the

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2023.3237502

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Southeast University. Downloaded on May 19,2023 at 11:24:10 UTC from IEEE Xplore. Restrictions apply.

7

evaluation metric for pose estimation. Figure 9 visualizes some
prediction examples output by our method.

TABLE III
THE ACCURACIES BASE ON ADD(-S) METRIC OF 6D POSE ESTIMATION IN

LINEMOD AND OCCLUSION-LINEMOD.

LineMOD Occlusion-LineMOD

Object DPOD Self6D Ours DPOD Self6D Ours

Ape 37.22 38.9 47.25 2.3 3.7 12.22

Benchvise 66.76 75.2 90.72 \ \ \

Camera 24.22 36.9 86.03 \ \ \

Can 52.57 65.6 91.30 4.0 43.2 42.96

Cat 32.36 57.9 71.99 1.2 18.7 25.37

Driller 66.60 67.0 93.43 10.5 32.5 35.42

Duck 26.12 19.6 44.17 7.2 14.4 16.67

Eggbox 73.35 99.0 96.52 4.4 57.8 50.32

Glue 74.96 94.1 88.52 12.9 54.3 49.86

Holepuncher 24.50 16.2 37.70 7.5 22.0 25.67

Iron 85.02 77.9 72.22 \ \ \

Lamp 57.26 68.2 94.78 \ \ \

Phone 29.08 50.1 62.94 \ \ \

Avg. 50 58.9 73.66 6.3 32.1 32.43

The left half of Table III reports the performance on the
LineMOD dataset with other methods that only use synthetic
data for training. DPOD solves the domain adaptation problem
by freezing the first layers of the network trained on ImageNet
and fine-tuning it with the synthetic data with domain random-
ization. Similar to our method, Self6D trains a pose estimation
network using synthetic data. In the inference stage, the
associated images of the real-world sample are generated by
a neural rendering, DIB-R, to perform an alignment between
real and rendered images w.r.t. the 6D pose.

According to the average ADD(-S) score, our method sig-
nificantly outperforms DPOD [22] and Self6D [24] by 23.66%
and 14.76%. However, for the object "Glue" with diverse pro-
jections from different views, the object "Iron" with complex
textures, and the highly symmetrical object "Eggbox", our
method is inferior to Self6D. This is because that DenseFusion
is sensitive to the imperfect real-to-sim transfer, which can
be observed from Table I that the FID score is non-zero,
hence, the color embeddings extracted from the generated
samples are slightly different from the color embeddings of
the raw simulated samples. To understand the difference with
Self6D, our pixel-level domain adaptation network can be
trained independently, given any 6D pose estimation network
pre-trained in simulation. However, Self6D needs two-stage
training from scratch. In addition, our pixel-level domain
adaptation network is a general real-to-sim method that can be
applied to other end-to-end robotic manipulation tasks such as
visual push and grasp [40].

The right half of Table III shows the evaluation of the
robustness towards occlusion. Our method achieves the highest
average accuracy of 32.43% on the Occlusion-LineMOD, in
comparison with DPOD and Self6D. As the examples in

Fig. 8. Examples of image transfer results in Occlusion-LineMOD. Columns
1 to 2 show the cases with partial occlusion, where our method works well.
Columns 3 to 4 show the cases with truncation, where pose estimation is
difficult.

Figure 8, the 1st and 2nd columns show the situations of partial
occlusion where our method works well, and the 3rd and 4th
columns show the case that the occlusion divides the object
into two parts, in which our method has a limitation. Such
an observation is understandable since the pose estimation on
half of an object’s RGB-D data is almost impractical.

TABLE IV
THE ACCURACIES OF 6D POSE ESTIMATION IN HOMEBREWEDDB.

Methods

Object DPOD [22] Self6D [24] Ours

Benchvise 52.9 72.1 84.66

Driller 37.8 65.1 84.37

Phone 7.3 41.8 84.07

Avg. 32.7 59.7 84.37

Table IV additionally shows the result in Home-
brewedDB [41] based on ADD(-S) metric, which demonstrates
the generality of our method. The results show our method out-
performs significantly DPOD and Self-6D when the datasets
with simpler scenarios and fewer occlusions, as shown in
Column 7 of Figure 9.

VI. ROBOT GRASPING EXPERIMENTS

In this section, we aim to verify the viability and robustness
of our grasping pipeline for pixel-level domain adaptation to
real-to-sim 6D object pose estimations. In the grasping system,
we employ a UR5 robotic arm equipped with a Robotiq 2-
fingers gripper and RealSense D435 and we perform several
online grasping experiments.

A. Datasets and Models

For obtaining synthetic data, we have developed a data
generator using Blender. Our synthetic data generator supports
rendering synthetic samples in BOP Format [36]. Furthermore,
to guarantee the distribution of object poses widely enough to
contain the real-world distribution, our data generator con-
tains two modules: PhysicalPositioning and ObjectSampler. In
PhysicalPositioning, CAD models are set with the specified
height. In ObjectSampler, the object poses of one CAD model
are uniformly sampled at certain intervals.

Then, we chose three object models including shampoo,
banana, and lotion from Grasp-1 Billion [42] in the simulation
domain to build our grasping dataset. We generated 1000
synthetic samples and annotations for each object, 400 of

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2023.3237502

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Southeast University. Downloaded on May 19,2023 at 11:24:10 UTC from IEEE Xplore. Restrictions apply.

8

Fig. 9. Examples of object pose estimation results in LineMOD, Occlusion-LineMOD and HomebrewedDB. Object point cloud is transformed according to
the predicted pose and then projected to the 2D image frame. Columns 1 to 4 depict the prediction in the LineMOD and Columns 5 to 6 show that in the
Occlusion-LineMOD. Column 7 represents the pose prediction result in the HomebrewedDB.

them are generated with domain randomization of background
for the cross-domain segmentation model, and 600 of them
are generated with a black background for the CCM Pixel-
DA network and DenseFusion. 300 samples of one object in
different poses are generated using the ObjectSampler module
with a black background and without occlusion. Another 300
samples of 3 objects are generated in random poses using the
PhysicalPositiong module with 10% partial occlusion.

For obtaining real-world data, we collected these three
object models and 225 samples without occlusion using Re-
alSense D435 as shown in the right image in Figure 10. The
real-world samples are augmented to 900 to train the CCM
Pixel-DA network.

(a) (b) (c)

Fig. 10. Sample images from our dataset. (a) is an example of the synthetic
samples generated by domain randomization, which are fed to train the cross-
domain transferable Mask R-CNN. (b) shows an example of the synthetic
samples with a consistent background, which are prepared for training the
DenseFusion and CCM Pixel-DA network. (c) depicts an example of real-
world samples, which are fed into the inference stage as well as preprocessed
for training the CCM Pixel-DA network.

To prepare the domain adaptation dataset and train the
domain adaptation model, we initially used the 3000 synthetic
samples of 3 objects to train the Mask R-CNN network needed
in DenseFusion. Previous work [43] proves that the trained
Mask R-CNN has the ability for cross-domain semantic seg-
mentation, in situations where the synthetic samples are gen-
erated with the same object model and camera configurations
from the real world. Therefore, we utilized this cross-domain
transferable semantic segmentation network to segment the
900 real-world sample images. The resulting 900 masked real-
world images and the 1800 simulated images with rendered
masks were pre-processed according to Section IV-A. This
yields the dataset for training the domain adaptation network.
After 100 epochs of training, the loss of the domain adaptation
network tended to be stable.

To train the object pose estimation model, we used those

1800 synthetic samples with black backgrounds. During train-
ing for DenseFusion, we set the sample points on the model
as 500 and the learning rate as 0.0002, which linearly decayed
when test loss was less than 0.03. The iterative refinement was
turned on if the test loss was less than 0.02. We kept the same
training rate for the first 100 epochs and linearly reduced the
rate to zero over the next 100 epochs. After 130 epochs of
training, the model has converged.

B. Real-World Robot Grasping

UR5

Workspace

Realsense

MCS

Robotiq 85

Gripper

Fig. 11. The robotic grasping platform. It includes a UR5 robot with a Robotiq
85 gripper and a RGB-D sensor RealSense D435.

Using the models trained in Section V-B for the inference
stage, the UR5 robot performed the grasping in a real-world
setting as shown in Figure 11. The complete grasping pipeline,
as illustrated in Figure 12, is as follows:

a) The raw image, as shown in Figure 12(a), was fed to the
Mask R-CNN segmentation model to choose the object with
the highest confidence and obtain the target image crop. Then,
the image crop was transformed to the synthetic domain with
the real-to-sim image transfer model, as shown in Figure 12(b).

b) The generated image, the depth image, and the object
mask index were fed to DenseFusion for object 6D pose
estimation. Figure 12(c) depicts the object poses by fitting
the 3D model with red points to the scene point cloud.

c) The object pose was transformed to a grasp pose
represented by the green gripper point sets based on the
superquadric model, as shown in Figure 12(d).

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2023.3237502

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Southeast University. Downloaded on May 19,2023 at 11:24:10 UTC from IEEE Xplore. Restrictions apply.

9

d) The banana has been picked up successfully. Fig-
ures 12(e) and 12(f) show the snapshot when the gripper was
closed and the object was picked up, respectively.

e) The remaining shampoo and lotion ware picked up
in a similar way, as shown in Figures 12(g) to 12(l) and
Figures 12(m) to 12(r).

TABLE V
THE STATISTICAL RESULT FOR GRASPING EXPERIMENTS.

Object Grasping Success Success Rate%

Banana 20 20 100

Shampoo 20 18 90

SOD 20 17 85

Sum 60 55 91.67

We performed 60 robotic grasping trials with 3 objects
in different poses. The statistical results of the grasping
experiment are summarized in Table V, in which the average
grasping success rate of our methods is 91.67%. The exper-
iments validate that our method is effective for online robot
grasping without any real annotations.

C. Discussion
Due to the complex scene background and object cluttering,

we experimentally found that transferring a full image is
difficult to maintain the shape of all objects in the scene. This
is the reason why we propose object-level real-to-sim transfer
by cropping an image, instead of transferring a full image.
Therefore, our CCM Pixel-DA method is naturally integrated
with DenseFusion, which accepts image crops as input.

However, this may hinder the direct and seamless integration
of the proposed CCM Pixel-DA method with FFB6D [20]
and PVN3D [21], which are also based on RGB-D data
but require full images as input for pose estimation. While
our method achieves an average accuracy of 73.66% on
LineMOD, a recent work [26] that uses synthetic data and
PVN3D reaches an average accuracy of 77.5%. This implies
that replacing our pose estimation backbone with more recent
networks is promising. We could improve the extendibility
of the CCM Pixel-DA method by background subtraction so
that the cropped images containing individual objects can be
assembled to reconstruct a full image that can be input into
FFB6D or PVN3D.

VII. CONCLUSION

In this paper, we presented CCM Pixel-DA, a novel real-to-
sim approach to unsupervised domain adaptation for object
pose estimation. Compared with the previous method, the
proposed model preserves the structural information, semantic
information, and object pose during the transfer. The approach
also inherits the advantages of unsupervised domain adaptation
methodologies, in that it only requires unpaired pose estima-
tion samples. Thus our method is implemented as a robot
grasping system that requires no object pose annotation in
the real-world domain. Therefore, the system is low-cost and
straightforward to deploy. Moreover, the proposed method de-
couples domain adaptation and pose estimation, which means
that the proposed real-to-sim network can be further applied
to the end-to-end learning of other robotic manipulation tasks.

ACKNOWLEDGMENT

This work is sponsored by the Natural Science Founda-
tion of Jiangsu Province (No.BK20201264), Zhejiang Lab
(No.2022NB0AB02), and the National Natural Science Foun-
dation of China (No.61573101).

REFERENCES

[1] M. Gschwandtner, R. Kwitt, A. Uhl, and W. Pree, “Blensor: Blender
sensor simulation toolbox,” in International Symposium on Visual Com-
puting. Springer, 2011, pp. 199–208.

[2] B. Planche, Z. Wu, K. Ma, S. Sun, S. Kluckner, O. Lehmann, T. Chen,
A. Hutter, S. Zakharov, H. Kosch et al., “Depthsynth: Real-time realistic
synthetic data generation from cad models for 2.5 d recognition,” in 2017
International Conference on 3D Vision (3DV). IEEE, 2017, pp. 1–10.

[3] B. Planche and R. V. Singh, “Physics-based differentiable depth sensor
simulation,” in IEEE/CVF International Conference on Computer Vision,
2021, pp. 14 387–14 397.

[4] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrish-
nan, L. Downs, J. Ibarz, P. Pastor, K. Konolige et al., “Using simulation
and domain adaptation to improve efficiency of deep robotic grasping,”
in 2018 IEEE international conference on robotics and automation
(ICRA). IEEE, 2018, pp. 4243–4250.

[5] S. Zakharov, W. Kehl, and S. Ilic, “Deceptionnet: Network-driven
domain randomization,” in IEEE/CVF International Conference on
Computer Vision, 2019, pp. 532–541.

[6] S. I. Nikolenko et al., “Synthetic data for deep learning,” arXiv preprint
arXiv:1909.11512, vol. 3, 2019.

[7] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan,
“Unsupervised pixel-level domain adaptation with generative adversarial
networks,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 3722–3731.

[8] C. Papaioannidis, V. Mygdalis, and I. Pitas, “Domain-translated 3d ob-
ject pose estimation,” IEEE Transactions on Image Processing, vol. 29,
pp. 9279–9291, 2020.

[9] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2017,
pp. 2223–2232.

[10] S. J. Anderson, N. Yamagishi, and V. Karavia, “Attentional processes
link perception and action,” Proceedings of the Royal Society of London.
Series B: Biological Sciences, vol. 269, no. 1497, pp. 1225–1232, 2002.

[11] M. Tucker and R. Ellis, “The potentiation of grasp types during visual
object categorization,” Visual Cognition, vol. 8, no. 6, pp. 769–800,
2001.

[12] W. Zhao, R. Lun, C. Gordon, A.-B. Fofana, D. D. Espy, M. A.
Reinthal, B. Ekelman, G. Goodman, J. Niederriter, C. Luo, and X. Luo,
“A privacy-aware kinect-based system for healthcare professionals,” in
2016 IEEE International Conference on Electro Information Technology
(EIT), 2016, pp. 0205–0210.

[13] K. Qian, X. Jing, Y. Duan, B. Zhou, F. Fang, J. Xia, and X. Ma, “Grasp
pose detection with affordance-based task constraint learning in single-
view point clouds,” Journal of Intelligent & Robotic Systems, vol. 100,
pp. 145–163, 2020.

[14] Y. Liu, L. Zhou, H. Zong, X. Gong, Q. Wu, Q. Liang, and J. Wang,
“Regression-based three-dimensional pose estimation for texture-less
objects,” IEEE Transactions on Multimedia, vol. 21, no. 11, pp. 2776–
2789, 2019.

[15] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab, “SSD-6D:
Making rgb-based 3D detection and 6D pose estimation great again,” in
2017 IEEE International Conference on Computer Vision (ICCV), 2017,
pp. 1530–1538.

[16] C. Wang, D. Xu, Y. Zhu, R. Martín-Martín, C. Lu, L. Fei-Fei, and
S. Savarese, “Densefusion: 6D object pose estimation by iterative dense
fusion,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 3338–3347.

[17] S. Iwase, X. Liu, R. Khirodkar, R. Yokota, and K. M. Kitani, “Repose:
Fast 6d object pose refinement via deep texture rendering,” in 2021
IEEE/CVF International Conference on Computer Vision (ICCV), 2021,
pp. 3283–3292.

[18] Y. Xu, K.-Y. Lin, G. Zhang, X. Wang, and H. Li, “Rnnpose: Recurrent 6-
dof object pose refinement with robust correspondence field estimation
and pose optimization,” in 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022, pp. 14 860–14 870.

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2023.3237502

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Southeast University. Downloaded on May 19,2023 at 11:24:10 UTC from IEEE Xplore. Restrictions apply.

10

Object Pose Grasp Pose Visualization

S
te

p
1

S
te

p
2

S
te

p
3

Robot Grasp 1 Robot Grasp 2Scene image Generated Sample

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 12. Online robotic grasping results. Firstly, the RGB-D sensor captured a scene RGB-D image as shown in (a), and the RGB image was transferred
to the simulation domain as shown in (b). Then, the object pose was detected as shown in (c) and the grasp pose was shown in (d). (e) and (f) depict the
grasping procedure. Step1, Step2, and Step3 depict the sequence of picking up three objects, where the three steps are similar.

[19] Y. Su, M. Saleh, T. Fetzer, J. Rambach, N. Navab, B. Busam, D. Stricker,
and F. Tombari, “Zebrapose: Coarse to fine surface encoding for 6dof
object pose estimation,” in 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022, pp. 6728–6738.

[20] Y. He, H. Huang, H. Fan, Q. Chen, and J. Sun, “Ffb6d: A full flow
bidirectional fusion network for 6d pose estimation,” in 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2021,
pp. 3002–3012.

[21] Y. He, W. Sun, H. Huang, J. Liu, H. Fan, and J. Sun, “PVN3D: A deep
point-wise 3D keypoints voting network for 6DoF pose estimation,” in
2020 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2020, pp. 11 629–11 638.

[22] S. Zakharov, I. Shugurov, and S. Ilic, “Dpod: 6d pose object detector
and refiner,” in IEEE/CVF international conference on computer vision,
2019, pp. 1941–1950.

[23] J.-P. Mercier, C. Mitash, P. Giguere, and A. Boularias, “Learning
object localization and 6d pose estimation from simulation and weakly
labeled real images,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 3500–3506.

[24] G. Wang, F. Manhardt, J. Shao, X. Ji, N. Navab, and F. Tombari, “Self6d:
Self-supervised monocular 6d object pose estimation,” in European
Conference on Computer Vision. Springer, 2020, pp. 108–125.

[25] S. Tyree, J. Tremblay, T. To, J. Cheng, T. Mosier, J. Smith, and S. Birch-
field, “6-dof pose estimation of household objects for robotic manipula-
tion: An accessible dataset and benchmark,” arXiv:2203.05701v1, 2022.

[26] H. Cao, L. Dirnberger, D. Bernardini, C. Piazza, and M. Caccamo,
“Learning 6d pose estimation from synthetic rgbd images for robotic
applications,” arXiv preprint arXiv:2208.14288, 2022.

[27] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb,
“Learning from simulated and unsupervised images through adversarial
training,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 2242–2251.

[28] X. Jing, K. Qian, X. Xu, J. Bai, and B. Zhou, “Domain adversarial
transfer for cross-domain and task-constrained grasp pose detection,”
Robotics and Autonomous Systems, p. 103872, 2021.

[29] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan,
J. Ibarz, S. Levine, R. Hadsell, and K. Bousmalis, “Sim-to-real via
sim-to-sim: Data-efficient robotic grasping via randomized-to-canonical
adaptation networks,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 12 627–12 637.

[30] X. Liang and E. P. Xing, “Unsupervised real-to-virtual domain unifi-
cation for end-to-end highway driving,” Jun. 6 2019, US Patent App.
16/140,311.

[31] G. Vezzani, U. Pattacini, and L. Natale, “A grasping approach based
on superquadric models,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), 2017, pp. 1579–1586.

[32] K. Huebner, “Badgr—a toolbox for box-based approximation, decompo-
sition and grasping,” Robotics and Autonomous Systems, vol. 60, no. 3,
pp. 367–376, 2012.

[33] G. Vezzani, U. Pattacini, G. Pasquale, and L. Natale, “Improving su-
perquadric modeling and grasping with prior on object shapes,” in 2018
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 6875–6882.

[34] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-
time style transfer and super-resolution,” in European Conference on
Computer Vision. Springer, 2016, pp. 694–711.

[35] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from
a single image using a multi-scale deep network,” arXiv preprint
arXiv:1406.2283, 2014.

[36] T. Hodan, F. Michel, E. Brachmann, W. Kehl, A. GlentBuch, D. Kraft,
B. Drost, J. Vidal, S. Ihrke, X. Zabulis et al., “Bop: Benchmark for 6D
object pose estimation,” in European Conference on Computer Vision
(ECCV), 2018, pp. 19–34.

[37] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local
nash equilibrium,” Advances in Neural Information Processing Systems,
vol. 30, 2017.

[38] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assess-
ment: from error visibility to structural similarity,” IEEE Transactions
on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[39] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A convolu-
tional neural network for 6d object pose estimation in cluttered scenes,”
in RSS, 2018.

[40] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser,
“Learning synergies between pushing and grasping with self-supervised
deep reinforcement learning,” in 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 4238–
4245.

[41] R. Kaskman, S. Zakharov, I. Shugurov, and S. Ilic, “Homebreweddb:
Rgb-d dataset for 6d pose estimation of 3d objects,” in IEEE/CVF
International Conference on Computer Vision Workshops, 2019, pp. 0–0.

[42] H.-S. Fang, C. Wang, M. Gou, and C. Lu, “GraspNet-1Billion: A
large-scale benchmark for general object grasping,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020,
pp. 11 441–11 450.

[43] M. Danielczuk, M. Matl, S. Gupta, A. Li, A. Lee, J. Mahler, and
K. Goldberg, “Segmenting unknown 3D objects from real depth images
using mask r-cnn trained on synthetic data,” in 2019 International
Conference on Robotics and Automation (ICRA), 2019, pp. 7283–7290.

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2023.3237502

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Southeast University. Downloaded on May 19,2023 at 11:24:10 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Related work
	Overview
	Pose Estimation Sample Transfer based on Domain Adaptation
	Pixel-DA Module
	Cycle-Consistency Module
	Content-Consistency Module
	Mapping-Consistency Module

	Experiments and Comparison Studies
	Datasets
	Evaluation Metrics
	Pixel-level Domain Adaptation Results
	6D Pose Estimation Results

	Robot Grasping Experiments
	Datasets and Models
	Real-World Robot Grasping
	Discussion

	Conclusion
	References

