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a b s t r a c t

Tubular objects such as test tubes are common in chemistry and life sciences research laboratories,
and robots that can handle them have the potential to accelerate experiments. Moreover, it is expected
to train a robot to manipulate tubular objects in a simulator and then deploy it in a real-world
environment. However, it is still challenging for a robot to learn to handle tubular objects through
single sensing and bridge the gap between simulation and reality. In this paper, we propose a novel
tactile–motor policy learning method to generalize tubular object manipulation skills from simulation
to reality. In particular, we propose a Sim-to-Real transferable in-hand pose estimation network that
generalizes to unseen tubular objects. The network utilizes a novel adversarial domain adaptation
network to narrow the pixel-level domain gap for tactile tasks by introducing the attention mechanism
and a task-related constraint. The in-hand pose estimation network is further implemented in a
Reinforcement Learning-based policy learning framework for robotic insert-and-pullout manipulation
tasks. The proposed method is applied to a human–robot collaborative tube placing scenario and a
robotic pipetting scenario. The experimental results demonstrate the generalization capability of the
learned tactile–motor policy toward tubular object manipulation in research laboratories.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Robotic chemists [1] have been applied to accelerating the
nvestigation of catalyst formulations, as what they do in one
eek is more than a student could typically study in 4 years.
he capability of manipulating tubular objects is highly expected
or robotic chemists that operate in a conventional, unmodified
aboratory. For these robots, it is imperative that the learned
ontact-rich manipulation skills generalize well to environmental
hanges, task variations, as well as different tubular objects to be
anipulated. To improve the task’s generalization ability, data-
riven skill learning is more desirable than a hand-engineered
ontrol paradigm.
In this regard, one challenge is the perception of tubular

bjects’ in-hand poses in the skill learning. There are abundant
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contact-rich manipulations of different and sometimes transpar-
ent objects in chemical experiments, such as placing the test
tubes in the reagent racks, and manipulating the droppers for
reagent transferring, as shown in Fig. 1. It is challenging to detect
these in-hand transparent objects using vision only, not only
due to heavy occlusions but also because of the reflection and
lack of salient features in transparent objects [2]. In contrast,
in-hand tactile sensing is appropriate to compensate for the
limitation of vision. In particular, optical tactile sensors such
as GelSight [3] provide high-resolution tactile images and are
extensively utilized in tactile-guided tasks.

In addition, positional uncertainty in robotic grasping as well
as variations in tubular objects being manipulated indicates un-
seen in-contact surfaces. As a particular example, a robot chemist
that collaborates with human chemists may receive different
tubular objects from its human counterpart and is required to
place them into a rack. Due to the inaccurate human handover
motion [4], it is difficult for the robot to ensure a fixed grasp
position, resulting in the possibility of different parts of an ob-
ject being held, and sometimes the in-contact textures are even
unseen. Therefore, the tactile–motor policy in this context should
generalize well toward the unseen surface texture of objects.

https://doi.org/10.1016/j.robot.2022.104321
https://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2022.104321&domain=pdf
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Fig. 1. Tactile-guided human–robot collaborative tube placing (left) and robotic
pipetting (right). There are a UR5 robot and a Robotiq 2F-85 gripper equipped
with two DIGIT sensors in both fingers.

Similar to visuomotor policies, RL-based tactile–motor policies
call for end-to-end in-hand pose estimation methods with high
generalization capability.

Another concern is learning the tactile–motor policy via sim-
o-real transfer. The soft elastomer of optical tactile sensors is
rittle and subject to wear-and-tear during robotic explorations.
n addition, large-scale real-world data with annotation are costly
or robot manipulation learning [5]. Therefore, transferring robot
anipulation skills learned in simulation to reality is an effective
ay to reduce training costs [6]. When the real-world scenarios
nd manipulated objects are unseen in the simulator, zero-shot
ross-domain policy transfer is expected to reproduce the robotic
anipulation skills in the real world without further training in

he real-world domain. Although tactile simulators [7–9] have
een proposed to produce high-resolution tactile images, the
imulation models are unable to capture the imperfect details
e.g., shadows, scratches) and object deformation in realistic tac-
ile images for tubular objects. Because of the inherent domain
ap, the generalization performance of the model trained by syn-
hetic tactile images will be significantly reduced when deployed
n the real-world environment.

Recent advances in unsupervised domain adaptation have ex-
ibited the capability of sim-to-real perceptual transfer in visual
r tactile based robotic tasks [10–12]. By the adversarial training
ith paired [10] or unpaired [11,12] simulated and real-world
ata between generator and discriminator, the probability dis-
ribution between the simulation domain and the real-world
omain is learned autonomously. However, for those optical tac-
ile sensors (e.g., the DIGIT sensor) with hard silicone elastomer,
heir tactile images are less sensitive to the deformation of the
bject caused by pressing. This means that pressing with mod-
rate force will result in less distinctive features in the tactile
mages. In this case, the generation network based solely on
onvolutional Neural Networks (CNNs) may not be competent for
erceiving the texture features. To handle this problem, applying
he attention mechanism and a task-related constraint can focus
n the in-contact regions in the tactile images, enhance the global
erception ability of the network, and thus transfer tactile images
ith higher quality.
In this paper, we consider different robotic grasp positions

n the tubular objects, which will produce seen or unseen in-
ontact textures. At the same time, sim-to-real gaps lead to
ifficulty for transferring manipulation policy from simulation
o reality. To this end, we propose a method for generalizing
o unseen in-contact textures and bridging sim-to-real gaps. In
articular, we propose CTF-CycleGAN (CNNs and Transformer
usion-CycleGAN), which is trained with unpaired data collected
2

from simulation and reality. We optimize the design of network
modules by introducing the attention mechanism and construct-
ing a task-related constraint to reduce the domain gap of tactile
images in estimating the in-hand pose of tubular objects. This
ensures higher reliability in manipulating unseen tubular ob-
jects when the learned tactile–motor policy is transferred to a
real-world setting.

In summary, the contributions of this work are three-fold:

• A novel tactile–motor policy framework is proposed for
learning robotic skills of tubular object manipulation that
are generalizable toward Sim2Real transfer and different
tubular objects. This is achieved via decoupling reinforce-
ment learning-based skills and pixel-level tactile image
transfer, which is also a general paradigm extendable to a
variety of tactile–motor policy learning tasks.

• We propose a Sim2Real in-hand pose estimation method
for tubular objects using tactile images. The key of the
method is CTF-CycleGAN, a novel pixel-level unsupervised
domain adaptation network that cascades CNNs and Trans-
former. We introduce the attention mechanism and a novel
task-related constraint to ensure high-quality tactile image
transfer. The proposed method ensures high generalization
capability of in-hand pose estimation toward unseen surface
textures of tubular objects.

• The proposed approach is implemented for learning
Sim2Real transferable robotic insert-and-pullout actions,
which are further evaluated in a human–robot collabora-
tive tube placing scenario and a robotic pipetting scenario.
Experiment results demonstrate the effectiveness of our
approach in dealing with domain gaps as well as unseen
in-contact textures.

The rest of this paper is organized as follows: the related
work is reviewed in Section 2 and the proposed methods are
introduced in Section 3. Section 4 illustrates the experimental
setup and data preparation, followed by a description of the
experimental results in Section 5, and Section 6 gives the con-
clusion.

2. Related work

2.1. Tactile–motor policy

Tactile provides the information to determine the states and
properties of the manipulated objects, such as shape, pose, tex-
ture, material [13–18], etc. Compared with two conventional
tactile sensors, the single-point contact sensor and the tactile
array, the optical tactile sensor is able to present high-resolution
tactile images. Typical optical tactile sensors like GelSight, GelTip,
TacTip, and DIGIT [3,19–21], have been used for multiple robotics
tasks, for example, sliding detection, texture recognition, surface
tracking, object pushing, cable operation, plugging and screw-
ing [10,22–26], etc.

In the works of [23,24], the tactile texture is used to extract
uniform hand-engineered features, but the manipulated object
with a single type and simple texture results in poor generaliza-
tion ability of policies. In numerous experiments, it is difficult to
extract hand-engineered features since the manipulated object’s
size, shape, and texture details are varied. The end-to-end tactile–
motor policy learning methods [10,25,26] directly utilize tactile
images as input, learn the features present in the tactile images
via convolutional neural networks, recursive neural networks, or
Transformer, etc., then maps the features to robot manipulation
policies. The aforementioned methods improve the generaliza-
tion ability of the tactile–motor policies for various manipulated
objects via the gradient coherence of the neural network.
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Fig. 2. An overview of our proposed framework. (a) includes training the CTF-CycleGAN and the AngleNet, and AngleNet is trained separately from the CTF-CycleGAN,
(b) shows the robot manipulation policy learning in the simulator, and (c) shows the deployment of the model in the real-world setting.
2.2. Sim-to-real transfer of robot manipulation skills

Recent studies have tried to improve the data-efficiency by
training the policy in simulation and transferring the acquired
skills to the real-world setup. However, because of the domain
gaps, the performance will degrade when the model trained in
simulation is directly deployed to reality. Several methods have
been proposed to mitigate this issue, which can be categorized
into three types: domain randomization, domain adaption, and
network distillation [27].

Domain randomization methods [28–31] provide enough sim-
ulated variability during training so that the model is able to
generalize to reality. In particular, adding random noise, random
color transformation, or geometric transformation to the simu-
lated images helps data distribution get closer to the actual one as
much as possible, which improves the image-based domain ran-
domization method. Some dynamics parameters are randomized
in [28], such as the mass of each part of the robot, the damping
at the joint interface and so on. The method in [29] randomizes
visual information, including the shape and number of sundries,
the texture of the objects, etc. The ideas of methods mentioned
above for Sim2Real problems are similar, which both narrow the
gap by expanding the dataset.

In contrast, by adaptively learning from the images and ac-
quiring the data distribution of the target domain, the domain
adaptation methods [10–12,32] effectively handle the problem
of the inconsistent probability distribution between the training
3

samples and the testing samples. For instance, Patel et al. [32]
propose a model for estimating the tactile images from the in-
contact depth data. A work close to ours is [12], in which Cy-
cleGAN is utilized to narrow the gap between simulation and
reality for GelSight. But our work is different from [12] in that
we propose an improved CTF-CycleGAN and have applied the
network to tactile-based robot manipulation tasks.

In this work, we focus on the pixel-level domain adaptation
approach. For the benefit of the trained RL policy model adapting
to reality better, we additionally perform a set of random opera-
tions to ensure that the simulator settings accurately reflect real
scenarios. As a result, we are able to implement the sim-to-real
transfer without training robot manipulation skills in reality or
distilling a policy network using real-world data.

3. Proposed methods

Fig. 2 illustrates the overview of the proposed method. In the
training stage, the tactile image transfer network CTF-CycleGAN is
trained using unpaired simulated and real-world tactile images.
This means that they can be captured in the simulator and the
real world independently, at inconsistent poses and with distinct
pressing forces. Then, the synthetic tactile images captured from
the simulator are converted to generated tactile images by the
sim-to-real generator GS→R of CTF-CycleGAN. Using the generated
tactile images together with the automatically generated labels of
their simulation counterparts, we train the object in-hand pose
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Fig. 3. The overall framework of the proposed CTF-CycleGAN. It includes both sim-real-sim and real-sim-real cycle generation pipelines, in which the generators and
iscriminators will be alternately and iteratively trained according to the weighted sum of all losses.
L
o
t
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stimation network AngleNet to produce 1D in-hand poses of
ubular objects. Meanwhile, the robotic insert and pullout manip-
lation policies are trained in the simulator using a reinforcement
earning algorithm.

In the deployment stage, real-world tactile images are directly
ed into the trained AngleNet model. Since the AngleNet model
s trained on the generated tactile images with minor domain
aps, it generalizes well to real-world tactile images in the pose
stimation task. As the observations of states (e.g., object’s in-
and pose, robot’s end-effector pose) are domain-invariant, the
actile–motor policy network trained in the simulator can be
pplied to real-world settings without further fine-tuning.

.1. Transfer of tactile images

The proposed CTF-CycleGAN, as shown in Fig. 3, is built on
ycleGAN [33] with improvements in the generator and discrim-
nator. Moreover, the mask information of the synthetic tactile
mages is utilized to constrain the generator to produce higher-
uality details while retaining the structure information, which is
mportant for the in-hand tubular object pose estimation.

Network Architecture: We introduce the self-attention mech-
nism to construct a novel generator network based on the
ncoder–decoder structure, as shown in Fig. 4(a). In the encoding
tage, the high-level features of the raw tactile images with the
esolution of H × W are firstly extracted using multi-layer con-
olution blocks. Then the self-attention Transformer encoder [34]
onnected with the hidden layer is leveraged to improve the
eature extraction ability to adapt to the various texture changes
f the salient areas in the tactile images. We consider this design
ainly owing to that self-attention has a significant ability to cap-

ure global context information in tactile images, thereby focusing
n regions with salient features. Besides, employing the pre-
raining model and introducing a self-attention encoder structure
t the high level are capable of omitting the retraining process
ith large-scale data while promoting network convergence.
In the decoding stage, following the U-shaped structure de-

ign [35], the self-attention features extracted by the Trans-
ormer encoder are upsampled and concatenated with the high-
esolution CNN features obtained from the convolution block of
ifferent layers to achieve high-quality image generation.
We also design a multi-layer connection network as a discrim-

nator based on [36], which replaces the fully connected layer
4

with the fusing layer, as is shown in Fig. 4(b). The structure is
capable of smoothly connecting the discrimination information
hidden in different scale layers and enhancing the feature extrac-
tion ability. In addition, the perceptual area of the discriminator
for the tactile images is decreased to obtain the output in the form
of a matrix instead of a point, which is able to improve the do-
main classification capability of the discriminator. Therefore, the
discriminator will potentially stimulate the generator to maintain
the clarity and details in tactile image generation.

Loss Optimization: We leverage the basic adversarial loss
base and cycle-consistency loss Lcycle to maintain the consistency
f the texture content of the source domain samples during
he image generation process. Lbase consists of LbaseR and LbaseS ,
nd Lcycle includes LcycleR and LcycleS . LSGAN [36] is leveraged to

calculate the basic adversarial loss. Meanwhile, we introduce the
mapping consistency loss to regularize the generator, which can
preserve the colors when the tactile image gets translated from
one domain to the other and avoid superfluous translation [37].
For instance, the consistency loss guarantees that the sim-to-real
generator will not map the input data that matches the identity
of the real-world domain to other data domains.

Lmap S (GR→S, XS) = ExS∼XS [∥GR→S(xS) − xS∥1] (1)

Lmap R (GS→R, XR) = ExR∼XR [∥GS→R(xR) − xR∥1] (2)

where Lmap consists of Lmap R and Lmap S ; GS→R and GR→S repre-
sent the sim-to-real and real-to-sim generators, respectively; XR
and XS represent the datasets in the real-world and simulation
domain, respectively; xR and xS represent the real-world image
sample and the simulated image sample, respectively.

We introduce a task-related loss, which is the contact region
consistency loss with a mask information to focus on the fore-
ground region of the pressed object surface. Therefore, the gen-
erator has a greater capability to preserve the structural features
in the contact region. Using the mask information conveniently
obtained in the simulator, the mask-based Pairwise Mean Square
Error (PMSE) is further calculated on the simulated images and
the generated realistic style images. As a result, this enables the
generator to retain the basic structural information and task-
related information. In particular, the corresponding simulated
depth image dS is truncated according to the depth data without
object contact to obtain a binary mask image m . The calculation
S
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Fig. 4. (a) Network architecture of the generator. In the encoding stage, multi-layer convolution blocks are first utilized to extract the high-level features of the raw
simulated image xS , and then the features are followed by a self-attentive encoder with a hidden layer. In the decoding stage, the extracted self-attentive features
are upsampled to be combined with different high-resolution CNN features skipped from the encoding path. (b) The Fusing Layer of the discriminator. Input1, Input2
and Input3 represent the output features of the first, third and fourth residual blocks, respectively.
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Fig. 5. Various types of test tubes. The test tubes are different in thickness,
texture of caps, as well as thread of bottlenecks.

formulation of contact region consistency loss is obtained as
follows:
Lcontacts (MS, XS,GS→R)

=ExS∼XS

[
1
k

∥(xS − GS→R (xS)) ◦ mS∥
2
2

−
1
k2

(
(xS − GS→R (xS))T mS

)2] (3)

where k represents the number of the input image pixels; ◦

represents Hadamard product.
The overall loss includes four parts: basic adversarial loss,

cycle-consistency loss, mapping consistency loss, and contact re-
gion consistency loss.
Loverall (GS→R,GR→S,DS,DR, XS, XR)

=λbase
(
LbaseR + LbaseS

)
+ λcycle

(
LcycleR + LcycleS

)
+ λmap

(
LmapR + LmapS

)
+ λcontactLcontactS

(4)

where DR and DS represent the discriminator in the real-world
and simulation domain, respectively; λ , λ , λ and λ
base cycle map contact

5

Fig. 6. The architecture of AngleNet.

re the empirical coefficients of the basic adversarial loss, the
ycle-consistency loss, the mapping consistency loss, and the con-
act region consistency loss respectively. Therefore, the optimal
bjective model G∗

R→S and G∗

S→R are obtained according to the
ollowing optimization problems.
∗

R→S,G
∗

S→R = arg min
GR→S ,GS→R,DS ,DR

maxLoverall (5)

3.2. In-hand pose estimation of tubular objects

As shown in Fig. 5, we consider three possible parts of different
test tubes to be held by the robot, including side, bottleneck
and cap. We also consider variations in the tubes’ diameter, the
texture of caps, as well as thread of bottlenecks. The diversity
in the in-contact surface texture makes it challenging to extract
pose-aware tactile features using hand-engineered descriptors.

In this work, the pose of the manipulated tubular object in
relation to the robot gripper is included in the observation data
for the robot insert and pullout manipulation tasks. The pose θ
describes the angle at which the manipulated tube is deflected
from the tactile image’s vertical main axis. For estimating θ ,
we design an object in-hand pose estimation network, AngleNet,
which takes ConvNeXt [38] as the backbone and is added with a
fully connected layer for the angle regression, as shown in Fig. 6.

By converting synthetic tactile images via the sim-to-real gen-
erator, we obtain the generated tactile images, which are used
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o train AngleNet. The angle annotations are taken from the
imulated samples, and thus no real-world annotations are re-
uired. In addition, the superior performance of CTF-CycleGAN’s
enerator guarantees the AngleNet model trained on generated
actile images adapts well to real-world tactile images, without
ny fine-tuning using real-world data.

.3. Manipulation policy learning

In this work, we use Soft Actor–Critic (SAC) [39,40] to learn
he continuous control task of robotic tactile-based insert and
ullout. In our case, the clearance between the tubes and the
oles of the rack is large and the robot’s gripper cannot hold the
ubular object tight. Therefore, sensing the contact force during
he manipulation using a force sensor attached to the end of the
obot is unreliable. Instead of using force control, the insert and
ullout policies are mainly implemented by adjusting the tube’s
ose using in-hand tactile sensing. In order to avoid jamming,
e also construct a reward based on the wrench readings of the
obot.

Observations: For encapsulating the diversity in the stiffness
nd friction of the contact, we use the pose of the end-effector,
he sensed tactile, together with the wrench reading to model the
tate of the tasks.

- Kinematic: It provides the information about the position
(three-dimensional coordinate) and posture (quaternion
form) information of the Tool Center Point (TCP) of the
end-effector in the world coordinate system. It is a one-
dimensional array of 7 components: OK = [px, py, pz, qw, qx,
qy, qz]

- Tactile: 1D deflection angle information provided by An-
gleNet: OT = [θ̂ ]

- Wrench: The wrench reading of the robot is used to deter-
mine whether there are problems such as failure to insert
and jamming: QW = [wx, wy, wz]

Actions: The robot action array is composed of position and
osture displacement of the end-effector in three-dimensional
pace: A = [∆px, ∆py, ∆pz, ∆qw, ∆qx, ∆qy, ∆qz]

Reward: In this work, the robot manipulation skills include
nsert and pullout tasks. These two tasks are essentially composed
f a sequence of goal reach and pose control actions.
The goal reach is to send the object to be manipulated from

he initial position to the desired goal; The pose control is to
nsure that there are no excess collisions or contact between the
anipulated tubes and the hole during the insert and pullout
rocess. By defining a set of way-points to separate the two
ypes of actions, the success rates of insert and pullout tasks have
ncreased significantly. Therefore, the reward settings during the
raining are as follows:

eward = α0 ∗ gdiff + α1 ∗ adiff + α2 ∗ wt (6)

here gdiff represents the distance difference between the end
osition of the robot TCP and the target position in the world
oordinate system, adiff represents the angular deviation of the
bject in the world coordinate system concerning the vertical axis
the Z-axis we set as the world coordinate system), and wt repre-
ents the wrench signal which is determined by thresholding the
rench reading from the robot controller. As the wrench reading

s an estimation based on the required current in the motors,
t = 1 indicates that the robot arm is stuck when performing
he peg-in-hole action. α0, α1 and α2 represent the corresponding
eight, with α0 = −1, α1 = −0.04 and α2 = −1 in our
xperiment obtained by grid search.

Evaluation Metrics: To assess the effectiveness of the model,

we primarily rely on three indications.

6

Fig. 7. The real-world experimental setup (left) and the simulator (right).

- Reach Goal: whether the center of mass of the manipulated
object reaches the set target point;

- Object Stability: whether the container of the manipulated
object is knocked down by the object;

- Wrench Situation: whether the actuators of the robot arm
wrench during movement.

4. Experimental setup and data preparation

4.1. Real-world experiment setup

The real-world experimental system entails the use of a UR5
robot, a Robotiq 2F-85 gripper equipped with two DIGIT sensors
in both fingers and a RealSense camera, as shown in the left part
of Fig. 7.

The optical tactile sensors based on GelSight consist of a slab
of transparent elastomer covered with a reflective coating mem-
brane. When an object is pressed on the elastomer, the membrane
stretches to conform to its surface while maintaining a constant
reflectance. A camera placed in the sensor records the image of
this distortion, using illumination from light sources in different
directions. A photometric stereo algorithm [41] is then used to
reconstruct the depth map of the surface.

4.2. Simulation experiment setup

In our previous work [7], we have presented a Gazebo-based
GelSight simulator, in which the depth image of the object in
contact with the elastomer is captured in the field-of-view of a
simulated camera in the physical engine. To simulate the smooth
contact edges and the bump contouring around the in-contact
region of the real sensor, we process the obtained elastomer
deformation height map by Gaussian filtering, followed by Gaus-
sian difference. After that, the Phong illumination model [42] is
applied to compute the internal illumination of the elastomer and
therefore render the tactile image. See [7] for more details.

In this work, we build an RL-based robot manipulation skill
learning platform using MuJoCo [43], as shown in the right part
of Fig. 7. In order to integrate the tactile sensor simulator into the
platform, we use a modified version of MuJoCo-based GelSight
simulator instead of the PyBullet-based DIGIT simulator [8]. We
modified the GelSight simulator to produce DIGIT-like tactile
images by replacing the background image. Due to its curved
surface, the in-touch regions of a tube in DIGIT tactile images are
in an ellipse shape, compared to a rectangle shape in GelSight
tactile images, as shown in the left and middle columns of Fig. 9.
To handle this problem, we replace the flat elastomer in the
simulator with a curved one.

However, a new problem arises with the curved elastomer.
Since the non-touch region of the elastomer is not flat, the depth
reading of non-touch region is not a fixed value, as shown in

Fig. 8. This results in difficulty in capturing the contact region in
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Fig. 8. The flat (left) and curve (right) elastomer in DIGIT simulator.

Fig. 9. Result of the modified simulator. The left is the original simulated
GelSight image, the middle is the real DIGIT image, and the right is the simulated
DIGIT image with our modified simulator.

Table 1
The parameters setting of our optical tactile simulator.

im,s, im,d L̂m kd ks ka
Red (255,130,115) (0.0, −1.0, 0.25) 0.3 0.4 1.0
Green (120, 255, 153) (0.87, 0.5, 0.25) 0.1 0.4 1.0
Blue (108, 82, 255) (−0.87, 0.5, 0.25) 0.1 0.4 1.0

tactile images by thresholding. To solve this problem, we subtract
the depth map with object contact from the one without object
contact, and then we can project the subtracted depth map to a
plane to yield a height map, from which the contact region can
be easily extracted. The right column of Fig. 9 shows the final
synthetic tactile image captured from the modified simulator,
which is more similar to the real one. Detailed parameters setting
of the simulated tactile sensor is shown in Table 1.

4.3. Data collection

For training CTF-CycleGAN, the real-world dataset DReal
GAN con-

sists of 2790 tactile images, in which 1980 were captured on 20
objects (see [7] for printable object models), and 810 (270 × 3)
were taken from the side, cap and bottleneck of different test
tubes. Similarly, the simulation data DSim

GAN also includes 1980 +

270 × 3 images, which is unpaired with the real-world data.
Besides, the training and testing samples are randomly divided
according to 10:1 on both DReal

GAN and DSim
GAN .

For training AngleNet and evaluating the relationship between
the performance of AngleNet and dataset size, we have divided
our dataset into four sub-sets with different sizes, which contain
891 (Tiny), 2673 (Small), 8019 (Base) and 24057 (Large) gener-
ated tactile images of different simulated test tubes, respectively.
We also collected 540 unseen real-world tactile images of new
tubular objects (test tubes with different diameters, droppers)
as the testing dataset. These testing samples were collected by
mounting a DIGIT sensor to a robot’s flange and controlling the
robot to touch a fixed object at a predefined sequence of angles.
Therefore, the angle ground truth of the testing data can be
obtained automatically. It is worth mentioning that collecting
real-world test data is time-consuming. A case in point is that
we spent almost 12 h collecting 1350 real-world images. In con-
trast, the time we used to collect 8019 simulated images is just
30 min. The details of the test tubes used in our experiments are

explained in Section 5.2.
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Table 2
Comparison of CTF-CycleGAN with other methods.
Method Datasets FID↓ KID(x100)↓ SSIM↑

Direct XS&XR 110.820 4.159 0.764
CycleGAN XR&(Xgen)R 65.137 2.437 0.660
TGN XR&(Xgen)R 54.541 2.091 0.797
Abl.1 XR&(Xgen)R 58.233 2.057 0.778
Abl.2 XR&(Xgen)R 51.444 1.200 0.780
CTF-CycleGAN XR&(Xgen)R 46.724 0.936 0.787

4.4. Typical tasks

As we consider robot chemists to handle thousands of test
tubes and other tubular objects, the following two scenarios
are designed to contain the tactile–motor policies mentioned in
Section 3.3, i.e., ‘‘Reach&Insert’’ and ‘‘PullOut&Reach’’. The two
scenarios also involve the manipulation of both typical rigid ob-
jects (e.g., different parts of test tubes) and typical deformable
objects (e.g., the rubber tip of a dropper).

Human–robot Collaborative Tube Placing: The purpose of
this experiment is to test the generalization capability of the
learned skills toward uncertain grasp positions and unseen tex-
tures of objects. When receiving test tubes from a human coun-
terpart repeatedly, robots can hardly regrasp at the same position.
In this experiment, we consider the possibility of grasping at
three different parts of test tubes as well as variations in the
textures of the contact surface, as shown in Fig. 5.

Robotic pipetting: The robot continuously conducts a reagent
transfer task containing four steps: insert the dropper into the
vial (‘‘Reach&Insert’’), press the dropper to suck up the liquid
(‘‘SuckUp’’), pull out the dropper, move above a goal beaker
(‘‘PullOut&Reach’’), and press the dropper’s tip again to squeeze
out the liquid (‘‘SqueezeOut’’).

5. Experimental results

5.1. CTF-CycleGAN transfer results and ablation analysis

We first compared CycleGAN, TGN (Texture Generation Net-
work in [11]) and CTF-GycleGAN in the sim-to-real pipeline.
As shown in Fig. 10, CTF-GycleGAN outperforms CycleGAN and
TGN in the quality of generated tactile images. For example, the
‘‘cylinder_side’’ image has obvious generation defects in shape,
or the texture of the image has leaked to the background area. In
contrast, our method generates tactile images with higher quality.
This is because the constraints on contact region consistency sup-
press the texture leakage phenomenon, and therefore it is possi-
ble to better keep the edge structure and texture information in
the in-contact region of tactile images.

Then the ablation study compares CTF-CycleGAN with Cycle-
GAN, Abl.1 and Abl.2 for testing the effectiveness of the main
components of CTF-CycleGAN. Abl.1 represents the method of
ablating the contact region consistency loss and optimized dis-
criminator, and Abl.2 represents the method that only ablates the
contact region consistency loss. In addition, ‘‘Direct’’ indicates the
evaluation of the difference between the raw simulated dataset XS
and the raw real dataset XR.

As shown in Table 2, CycleGAN has a significant improvement
in the FID and KID indicators in the sim-to-real pipeline compared
with ‘‘Direct’’. CycleGAN pays more attention to the transfer of
features whilst neglecting the intuitive structural details, result-
ing in a decrease in the SSIM indicator. Compared with CycleGAN,
Abl. 1 has a 6.9 and 0.4 decrease in the FID and the KID metric,
respectively. This also verifies that the improved generator can
generate higher-quality images to meet the needs of tactile image
generation. The comparison between Abl. 1 and Abl. 2 validates
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Fig. 10. The comparison of sim-to-real effect using different algorithms. Wherein the first row represents an example of the raw simulated image dataset XS . The
second and third rows represent examples of adaptive real-world image datasets (Xgen)R generated by different methods, and the last row represents examples of
real-world image dataset XR .
that the discriminator stimulates the generator to generate more
realistic tactile images. With the task-related loss incorporated,
CTF-CycleGAN achieves the highest performance in all indicators.

5.2. In-hand pose estimation results

In our experiment, we consider test tubes with 5 different
diameters, 5 different textures of caps, as well as 5 different types
of bottleneck threads. Examples of them are shown in Fig. 5. For
each of the three aspects, we consider 3 types as ‘‘Seen’’ and the
other 2 types as ‘‘Unseen’’ in dividing the training and testing
dataset. For example, the ‘‘Seen’’ diameters are 13 mm, 15 mm
and 16 mm and the ‘‘Unseen’’ diameters are 12 mm and 18 mm.

The estimation results of the object in-hand pose estimation
network AngleNet, trained on Tiny, Small, Base and Large sub-sets,
are shown in Table 3. In the table, ‘‘Sim2Sim’’ means training
and testing exclusively on simulated data, and ‘‘Direct’’ denotes
training on simulated data and testing directly on real-world
data. ‘‘Sim2Real’’ means training on data generated by the CTF-
CycleGAN sim-to-real generator which we freeze, and testing on
real-world data. As the table shows, in general, the predicted
angle accuracy of AngleNet rises with the increase of the dataset
size. Particularly, the evaluation performance trained on the Base
and the Large sub-sets are very close. Hence, we use the Base sub-
set with 8019 simulated images in other comparison and ablation
experiments of AngleNet.

For each sub-set and each method in Table 3, it is comprehen-
sible that the accuracy of the ‘‘U’’ row is lower than that of the
‘‘S’’ row, as the ‘‘U’’ row indicates the generalization performance
of the models on unseen objects. According to Table 3, the high
accuracy of ‘‘Sim2Sim’’ implies that AngleNet ensures accurate
in-hand object pose estimation. In addition, by feeding the pose
estimator with transferred tactile images, ‘‘Sim2Real’’ outper-
forms ‘‘Direct’’ on all sub-sets, which indicates that our method is
8

capable of reducing the domain gap and accurately estimating the
in-hand object pose, even though the pose estimator is trained
only in a simulator.

We also conducted some comparison and ablation experi-
ments in testing the accuracy of AngleNet to demonstrate the
performance of our method, as is shown in Table 4. The meanings
of TGN, Abl.1 and Abl.2 have been claimed in Section 5.1. Besides,
the models of those experiments are all trained on the data gen-
erated by the sim-to-real generator of CTF-CycleGAN and other
methods for comparison or ablation, and tested on real-world
data. As the table shows, CTF-CycleGAN has the best performance
compared with other methods.

5.3. Robot policies learning results

In our work, the length of each tube is not known as a prior,
but it is assumed that the lengths of all tubes are within the range
of 10 cm–15 cm. In order to solve the problem of unknown tube
length, we design two way-points, i.e., approach position and end
position (see Fig. 13), and make sure that the vertical distance
between the two points is greater than the maximum length of
the tubes. Therefore, there is enough space between the approach
position and the end position to adjust the pose of various tubes
with different lengths. Denote the reagent rack depth as y. For the
tube length ≤ y, the insert is completed when the gripper reaches
the end position. For the tube length > y, the insert is terminated
if a collision between the tube and the bottom of rack is detected
according to the wrench reading.

The ‘‘Reach&Insert’’ and ‘‘PullOut&Reach’’ policies are trained
in the simulator. We also implemented another version of the
‘‘Reach&Insert’’ without pose control. The ‘‘Reach&Insert (without
pose control)’’ aims to verify the importance of pose observation
in the ‘‘Reach&Insert’’ task by omitting the observation of object
in-hand pose. Fig. 12 shows the reward curves and success rate
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Table 3
The quantitative accuracy evaluation results of the object in-hand pose estimation network AngleNet, trained on
Tiny, Small, Base and Large sub-sets, separately. ‘‘S’’ means seen, and ‘‘U’’ means unseen.
Sub-set Sim2Sim Direct Sim2Real

Tiny S
U

95.37% ± 1.88
59.79% ± 3.65

27.46% ± 8.03
12.50% ± 8.77

54.71% ± 4.25
24.67% ± 5.10

Small S
U

96.49% ± 1.02
68.42% ± 2.53

40.35% ± 6.72
26.32% ± 7.89

80.70% ± 2.58
57.02% ± 3.04

Base S
U

98.67% ± 0.89
71.36% ± 1.12

55.96% ± 5.32
34.18% ±5.87

85.92% ± 2.25
60.98% ± 2.65

Large S
U

98.02% ± 1.08
72.50% ±1.67

56.63% ±5.01
33.35% ± 5.60

86.70% ±1.99
62.33% ±2.48
Table 4
The quantitative Sim2Real accuracy evaluation results of AngleNet trained on
Base sub-set using the sim-to-real generator of CTF-CycleGAN and other methods
for comparison or ablation.
Method Seen Unseen

CycleGAN 72.85% ± 3.06 44.82% ± 4.11
TGN 74.67% ± 3.20 47.02% ± 3.54
Abl.1 80.13% ± 2.97 55.98% ± 3.17
Abl.2 82.88% ± 2.55 58.76% ± 2.99
CTF-CycleGAN 85.92% ± 2.25 60.98% ± 2.65

Table 5
The success rate of seen, unseen and all test tubes in Real-world Scenario 1
(row1, row2 and row3). The success rate of the dropper in Real-world Scenario
2 (row4).
Type Success Rate

Tube_Seen 83.33%
Tube_Unseen 70.00%
Tube_All 78.00%
Dropper 90.00%

curves of the three task training processes. The ‘‘Reach&Insert
(without pose control)’’ only has an 18.50% success rate dur-
ing the training phase in the simulated environment, as can
be observed. In contrast, the success rate of the ‘‘Reach&Insert’’
reaches 92.70%. For the ‘‘PullOut&Reach’’ task, the success rate
reaches 100.00%. Meanwhile, to improve the robustness of the
learned insert and pullout policies against contact and friction,
we performed random disturbance to the deflection angle of the
manipulated object in the observation of object in-hand pose
during training.

To compare with the decoupled training strategy, we also
ttempted to train the AngleNet and the policy as a whole,
.e., AngleNet is updated according to the loss of the policy.
owever, the training becomes difficult to converge while the
raining failure rate increases. The reason is that the ‘‘Reach’’ part
f the ‘‘Reach&Insert’’ policy is independent of tactile perception,
nd thus the two parts cannot benefit from each other during the
raining. In contrast, by decoupling the training of policy from
hat of tactile image transfer, the transferable skills are much
asier to be trained.

.4. Real-world Scenario 1: Human–robot collaborative tube placing

Fig. 13(a.0-7), (b.0-7), and (c.0-7) show three continuous tube-
lacing episodes, in which a human participant passes the test
ube to the robot and the robot holds sequentially the tube at the
ottleneck, the side and the cap.
To provide the desired goal for the ‘‘Reach&Insert’’ action, we

etect and locate the round holes on the wooden reagent rack
sing RealSense (see the left of Fig. 11) and then transform the
osition of each hole to the robot base coordinate system. As
hown in Fig. 13(a.0-7), (b.0-7), and (c.0-7), although the robot
9

Fig. 11. Detection and location of the reagent rack (left) and the reagent vial
(right).

Fig. 12. Reward curves (top) and success rate curves (bottom) of the three task
training processes in the simulation domain.

holds the test tubes of various lengths with different unknown
poses, it adjusts the gripper’s angle to vertically insert the test
tubes into the three holes of the reagent rack.

The first three rows of Table 5 present the task success rate of
seen, unseen and all test tubes in this experiment. It shows that
the success rates are 83.33%, 70.00%, and 78.00%, respectively. We
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Fig. 13. Experimental snapshot in real-world scenarios. The first three rows are the ‘‘Human–robot Collaborative Tube Placing’’ task, and the last row is the ‘‘Robotic
ipetting’’ task.
lso recorded the error bars of the deflection angle θZ between
he test tube and the Z-axis of the world coordinate system for
ifferent test tube parts (e.g., side, bottleneck, and cap) at each
ey stage of the task (initial position, reaching above the hole,
nd insert completion), as shown in Fig. 14. The result in Fig. 14
emonstrates that our method ensures that the deflection angle
radually approaches zero degree by adjusting the gripper pose,
ntil the insert task is completed.

.5. Real-world Scenario 2: Robotic pipetting

Fig. 13(d.0-7) shows a snapshot of the robotic pipetting sce-
ario, in which the robot sequentially conducts the four steps of
‘Reach&Insert’’, ‘‘SuckUp’’, ‘‘PullOut&Reach’’ and ‘‘SqueezeOut’’ to
ransfer reagent from a vial to a beaker. Details of the task can
lso be found in Section 4.4. In this experiment, the dropper’s tip
s constantly held by the robot’s gripper, and we choose a simple
nd pure background of the environment to ease the localization
f the reagent vial and the beaker using RealSense (see the right
f Fig. 11). The ‘‘SuckUp’’ and ‘‘SqueezeOut’’ operations are per-
ormed by applying adequate grip force to the gripper according

o the size of the in-contact region in the tactile image.

10
Fig. 14. The error bars of the deflection angle in Real-world Scenario 1. We
recorded the angles in three key way-points for the side, bottleneck and cap of
the test tube.
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It is worth noticing that we applied light grip force to the
dropper’s tip and therefore the texture of the in-contact region
in the tactile image is relatively indistinct. Nevertheless, thanks
to the generalization ability of the AngleNet, the robot could still
adjust the dropper’s pose and complete the insert manipulation.
As shown in row 3 of Table 5, after 30 consecutive episodes of
experiments, the overall task success rate reaches 90.00%.

6. Conclusion

In this paper, we propose a skill generalization method for
robotic tubular object manipulation tasks. In particular, we
present a novel sim-to-real transferable in-hand pose estimation
method using unsupervised adversarial domain adaptation of
tactile images. Using the in-hand tubular object pose estimation
results, the RL-based object insert and pullout policies learned in
a simulator generalize well to unseen real-world in-contact object
texture, as well as the sim-to-real domain gaps of the tactile
sensor. The proposed method is further applied to a human–
robot collaborative tube placing scenario and a robotic pipetting
scenario for a robot chemist. Experimental results validate the
performance of sim-to-real transfer of tactile–motor policy as
well as the capability of handling unseen textures of tubular
objects. The proposed method is independent of pose annotations
for real-world tactile images, and only unpaired simulated/real-
world tactile images are required for training the CTF-CycleGAN.
In the future, we plan to focus on more experimental scenarios
and construct a more universal experimental platform.
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