
SOUTHEAST UNIVERSITY

Human-Robot-Interaction
Final Project

Submitted by

Yongqiang Zhao
ID: 08117102

Robotics Engineering

Suprevised by

Prof. Kun Qian

April, 2020

1 Overall completion of the group

Our team completed simulation, objects identification, face recognition, voice generation
and speech recognition, etc., and concentrated on the main process.
In a word, we fully realized the experiment of human/objects recognition and voice inter-
action.

Name ID actually completed work, proportion of tasks undertaken
Yongqiang Zhao 08117102 simulation, 25%

Zhihai Bi 08117106 face recognition, 25%
Shaopu Song 08117122 voice interaction, 25%

Yu Du 08117125 objects identification & main framework, 25%

Table 1: team members and division of labor

2 Overall principle and design

• Main Framework

Figure 1: main framework

And our messages are defined as follows

Figure 2: routing table

1

• Simulation
We used the gazebo simulator to build a simulated Turtlebot robot under ROS, and
then built a map through Gmapping and presented it with Rviz. Finally, we completed
the task through multi-point navigation.

Figure 3: gazebo Figure 4: Turtlebot

• Objects Identification
We used yolov3 combining the list of ten kinds of objects and the weight of the trained
yolov3 which were provided by the teacher. And finally, we realized real time detection.

• Face Recognition
After comparing Face_Recognition and Baidu API, we decided to use Baidu API, and
the flow chart is as follows

Figure 5: the flow chart of face recognition

• Voice Interaction
By comparing Baidu API and Google API, we finally adopted Google API and added
natural language processing.
The structure diagram is drawn as follows

2

Figure 6: the structure diagram of voice interaction

And the logic diagram is drawn as follows

Figure 7: the logic diagram of voice interaction

• Socket Thread
We placed simulation, objects recognition and main process on one computer, and
placed face recognition and voice interaction on another computer. The two computers
passed information through TCP/IP protocol.
Prerequisite: WAN IP Configuration: DMZ Host & NAT(Port Mapping)

Figure 8: socket thread

3

3 Specific development and implementation

3.1 My Part

3.1.1 Build a simulation environment

• Edit a room model
Use the building editor function of gazebo

Figure 9: building editor

Use the four control buttons of add wall, add windows, add door and add star in the
upper left corner to build the environment

Figure 10: four control buttons

Right click on the wall to open the wall inspector editor, which is used to edit the
length of the wall and other information

Figure 11: wall inspector editor

Finally, a room model has been built, like the following

4

Figure 12: room model

Before saving, first open the hidden directory with Ctrl+H under the home directory,
and create a new folder under the path of .gazebo/models to save the built model.
Note that the model name should be the same as the file name. Save as follows,

Figure 13: save model

• Edit a world file
Open the gazebo editor and select the model just built in the insert tab. By using
the existing model of gazebo, we can continue to improve our environment and build
a world of our own.
Finally, we used the models which are the room model, sun, cabinet, bookshelf
person_standing and ISCAS_groundplane(from ROS learning package of Chinese
Academy of Sciences).
The world file is edited as follows

<?xml version="1.0" ?>
<sdf version="1.4">

<world name="default">
<scene>

<ambient >0.68 0.68 0.68 1.0</ambient>
<sky>

<sunrise/>
<clouds>

<speed>12</speed>
</clouds>
</sky>

</scene>
<physics type='ode'>

<max_step_size >0.001</max_step_size>
<real_time_factor >1</real_time_factor>
<real_time_update_rate >1000</real_time_update_rate >

5

<gravity>0 0 -9.8</gravity>
</physics>

<include>
<uri>model://ISCAS_groundplane </uri>

</include>
<include>

<uri>model://sun</uri>
</include>
<include>

<uri>model://our_house </uri>
<pose>0 -1.0 0 0 0 0</pose>

</include>
<include>

<uri>model://cabinet</uri>
<pose>-2.32 -2.965 0 0 0 0</pose>

</include>
<include>

<uri>model://bookshelf </uri>
<pose>3.3496 -4.399 0 0 0 0</pose>

</include>
<include>

<uri>model://person_standing </uri>
<name>person_standing </name>
<pose>2.238798 -3.10881 0 0 0 -2.355</pose>

</include>
<include>

<uri>model://person_standing </uri>
<name>person_standing_0 </name>
<pose>0.471 -3.492 0 0 0 2.70</pose>

</include>
<include>

<uri>model://person_standing </uri>
<name>person_standing_1 </name>
<pose>2.746 -1.652 0 0 0 -1.47</pose>

</include>
</world>

</sdf>

• Edit a launch file
Use the launch file to directly call the world we just set up. And add the configuration
related to Turtlebot
The final world is as follows

Figure 14: final world

6

3.1.2 Simulation package configuration

Install the related dependencies of Turtlebot.

sudo apt-get update sudo apt-get install ros-kinetic-turtlebot
ros-kinetic-turtlebot-apps ros-kinetic-turtlebot-interactions
ros-kinetic-kobuki-ftdi ros-kinetic-ar-track-alvar-msgs
ros-kinetic-turtlebot-simulator

Put related packages in ROS workspace, then compile it.

3.1.3 Mapping

Use the official gmapping package of ROS on Turtlebot, and the laser ranging sensor of
Turtlebot is used for simultaneous location and mapping (SLAM) in a strange environment.
Here is the process

• Run roslaunch robot_sim_demo turtlebot_world.launch to open the simulation en-
vironment;

• Start keyboard control program, run roslaunch turtlebot_teleop keyboard_teleop.launch;

• Building maps with gmapping, run roslaunch turtlebot_navigation gmapping_demo.launch;

• Run roslaunch turtlebot_rviz_launchers view_navigation.launch to open the rviz in-
terface, as shown in the figure below

Figure 15: turtlebot_rviz

The turnlebot starts from the origin of map coordinate system, and its positive direc-
tion is the positive direction of X axis. Click the keyboard control terminal opened in
step 2, and control the robot movement through the keyboard to complete the map
construction of the whole environment;

• After building the map, run rosrun map_server map_saver -f /filepath in the terminal,
and filepath is the save path.

3.1.4 Positioning and navigation

According to the established map, use global positioning(amcl) and navigation(move_base)
of the laser ranging sensor.

7

Figure 16: organization of navigation function package

As shown in the figure above, In the white box are the components that ROS has pre-
pared to use(move_base), in the gray box are the optional components of ROS(amcl and
map_server), and in the blue is the components on the robot platform that users need to
provide(sensor transforms, odometry source, sensor source, base controller).
”move_base” is the central hub of robot path planning under ROS. It subscribes to the data
of laser sensor, map, amcl and so on, then plans the global and local path, then transforms
the path into the speed information of the robot, and finally realizes the robot navigation.
Here, we mainly talk about the core part of move_base, that is the content in the middle
box.
First of all, we need to understand global cost map and local cost map. In order to under-
stand the concept of cost map, we need to know which map that the path is generated by
the planning algorithm when the robot is planning the path. It relies on a global map of the
environment built by gmapping scanning, but it is not possible to rely on only one original
global map. Because this map is static, we can’t update the obstacle information on the
map at any time. In the real environment, there will always be unexpected new obstacles in
the current map, or old obstacles have been removed from the environment map, so we need
to update this map at any time. At the same time, since the default map is a black white
gray three-color map, only the obstacle area, free moving area and unexplored area will be
marked. Robot path planning in such a map will lead to unsafe path planning, because our
robot needs to maintain a certain safe buffer distance with obstacles when moving, so that
the robot is safer when moving in the current map. As shown in figure, it is an original
global map built through gmapping. Among them, the white area represents the area that
can move freely, the black area represents the obstacle area, and the gray area represents
the unexplored area, that is, the unknown area. Costmap is simply to carry out various
processing on this map, which is convenient for us to carry out path planning later. In
ROS, costmap_2D is used to implement costmap. This package implements two new maps
on the original map. One is local cost map, the other is global cost map. Two cost maps
are prepared for local path planning and the other for global path planning.
After understanding the global cost map and the local cost map, the global planner and the
local planner, as the name implies, generate the global path and the local path based on the

8

global costmap and the local costmap respectively. The local path generated by the local
planner will fit the global path as much as possible and take into account the obstacles that
may appear at any time. The common global planning algorithms in ROS include Djikstra
and A* algorithm, while the local planning algorithms include trajectory rollout and DWA
algorithm. Finally, recovery_behaviors will take some recovery actions when the robot is
stuck in obstacles and other special circumstances.

3.1.5 Adjust posture

Set the linear speed to 0 and the angular speed to 5 deg/s in the turnlebot simulation
environment in the callback function. When receiving the pose adjustment data sent by
the main process, the robot starts to rotate in place to adjust the angle.
The key codes are as follows

def adjustcallback(data):
cmd_vel = rospy.Publisher('cmd_vel_mux/input/navi', Twist, queue_size=10)
5 HZ
r = rospy.Rate(5)

angle = 5 * int(data.data / 5)
turn_cmd = Twist()
turn_cmd.linear.x = 0
turn_cmd.angular.z = radians(5); # turn at 5 deg/s

rospy.loginfo("Turning")
for x in range(0, angle):

cmd_vel.publish(turn_cmd)
r.sleep()

return

3.1.6 Build a simulated person

At first, use the person model of gazebo, and then consider the person model which uses
3d max, blender or maya to build.

Figure 17: person model

3.1.7 Dock the main process

This module is completed earlier, so I use the method of simulating the main process to
check the function first, and then it docks the ture main process well after modifying some
node names.

9

3.2 The Others

• Zhihai Bi Used Baidu API to finish face recognition, met and solved many problems,
and completed the task very well.

• Shaopu Song Used Google API combined with natural language processing to finish
voice interaction, completed TCP/IP transmission and final verification with Yu Du,
and completed the task very well.

• Yu Du Used yolov3 to realize real time detection, and write the main framework,
completed TCP/IP transmission and final verification with Shaopu Song. And finally,
completed the task very well.

4 Experimental evaluation

4.1 Individual module testing

For the simulation control part of the turtlebot, open a new terminal in the HRI_sim.py file,
enter the directory where the HRI_sim.py file is located, and input python HRI_sim.py.
At this time, the turtlebot in the simulation environment will wait for the command signals
of other parts (such as the main process, face recognition, voice interaction part, object
recognition part, etc.);
Use talk.py and adjust.py to simulate other parts of the transmission instructions to test
the function of this part, in which talk.py is used to simulate the main process, which is used
to send the signal to specify the room position to the turtlebot, and adjust.py is used to
send the turtlebot position adjustment signal, and open two new terminals to input python
talk.py and python adjust.py respectively.
Enter 0 in the terminal where talk.py is located, that is, give the first instruction to the
turtlebot to go to the room with three guests. At this time, in HRI_sim.py terminal, you
can see that the turtlebot performs the action of going to the specific point of the room
with guests. In the simulation environment, you can also see that the turtlebot is moving.
After the turtlebot first arrives at the designated point of the room with guests, it will
send 4 and then wait for the next instruction. If you input the angle information that
should be adjusted in the terminal where adjust.py is located, (at present, the turnbot only
realizes counterclockwise rotation, so the angle information given is 0°-360°, 0° is the front
side of the turtlebot when the instruction is issued), At the terminal where HRI_sim.py is
located, you can see the information that the turtlebot is adjusting. After the adjustment
is completed, it will send out 7 signals. After three times of adjustment, input 1 at the
talk.py terminal, and the turtlebot performs the action of going to another room to pick up
the goods. At this time, you can see the relevant information at the HRI_sim.py terminal.
After picking up the goods, input 2 at the talk.py terminal The turtlebot will take the
guest’s room and deliver the goods. After three times of the same posture adjustment, it
finally completes the task.

10

4.2 Overall module testing

We have integrated face recognition and voice interaction, and configured and compiled it
on a computer. At the same time, we also configure simulation, object recognition and main
process to another computer, and then the two computers transmit information through
TCP/IP protocol. After testing, each module has realized its own functions, and achieved
the requirements of the experiment.

Figure 18: overall module testing

5 Analysis and Summary

5.1 World file

• Problem After improving the simulation environment, save it as a world file using
Ctrl+S, but the content of the file is difficult to change.

• Resolvent Use another file form.

5.2 Mapping

• Problem In the process of map building, because of the single environmental char-
acteristics, the strategy of keyboard controlling the movement of turtlebot, and the
limitation of 2D using laser, the map building is poor.

• Resolvent Add objects with larger bottom area. In the same time, move slowly when
building the map, and make some restrictions on the order of entering each room

5.3 Human simulation

• Problem At the beginning of simulation, we used the human simulation of gazebo,
but its species of human modle are few, and it is difficult to second creation.

• Resolvent Use 3D modeling software such as 3d max, blender or maya. I use blender
to create a cube shown as follows, but I haven’t learned how to build a house yet. But
at the teacher’s suggestion, I gave up the idea.

11

Figure 19: cube in blender

5.4 Access to main process

• Problem When the module of simulation is access to the main process, no or too
much messages are received by the main process.

• Resolvent Set Publisher as a global variable.

5.5 About the project

Every member of our team has completed this project conscientiously, and we often discuss
the problems encountered in the group. In general, we have completed this project very
well. Of course, the setting of this project itself is very good, which is conducive to exercise
our ability in coding, image processing, artificial intelligence, the use of ROS and voice
processing. It would be better if we could add physical operation.

6 Appendix

Our code can be obtained from
https://github.com/Mi-Dora/Human-Robot-Interaction.git

References

[1] https://blog.csdn.net/miffy2017may/article/details/97812440

[2] https://blog.csdn.net/qq_27977711/article/details/82024087?utm_source=
blogxgwz8

[3] https://wiki.ros.org/

[4] 中国大学 MOOC——《机器人操作系统入门》课程讲义

[5]《ROS 机器人编程》

[6] Programming Robots with ROS

12

https://github.com/Mi-Dora/Human-Robot-Interaction.git
https://blog.csdn.net/miffy2017may/article/details/97812440
https://blog.csdn.net/qq_27977711/article/details/82024087?utm_source=blogxgwz8
https://blog.csdn.net/qq_27977711/article/details/82024087?utm_source=blogxgwz8
https://wiki.ros.org/

